Connecting Web Services: C++ and Systinet (Idoox) to ASP/VBScript and Microsoft Web Services

Zoran Zaev

This month, Zoran Zaev builds a Web Service in C++ using Systinet’s WASP for C++ (formerly known as IdooXoap for C++), and then he calls it from ASP/VBScript. This article shows the kind of issues that you can run into as you work on implementing Web Services in C++, using WSDL with C++, and calling this implementation from an environment such as ASP.

Web Services offer a standard way of connecting systems based on different environments, whether that is operating systems, languages, or object models. As I had mentioned in the previous articles, this is not to say that you should never use Web Services to connect systems based on the same programming language or object model. Similar systems, could at times, benefit from the inherent loose coupling of the Web Services model, in addition to it being a potentially good long term decision in order to make your system more interoperable in the future.

In my previous few articles, I showed you how to connect a few different implementations of Web Services, from Java and IBM to Microsoft and Visual Basic, and even some scripting environments such as PERL, VBScript, and JScript. This month, I will recreate the same simple Web Service that I had created in the past issues (a job bank service, where job postings can be added by the partners of your company), however now I will use C++ for the server side and I will call this service with C++, and also with ASP (Active Server Pages) done in VBScript.

WASP for C++ Package Setup

I decided to use the Systinet’s (formerly known as Idoox) implementation for my C++ SOAP, called WASP for C++. You can find their site at http://www.systinet.com/index.html. There are a few other C++ implementations on the market that one could use, however Systinet’s is probably one of the better known ones. Systinet provides both Java and C++ Web Services implementations, as well as Web Services extension for Forte and an UDDI implementation that is implemented as an extension to the Java Web Services implementation. The C++ implementation comes in two flavors, Lite and Advanced. The Lite version is an opensource C++ implementation for Windows 2000, Windows CE, Linux (Debian & RedHat), and Sun Solaris operating systems. The sources are also available from Systinet, so WASP for C++ can be ported to other platforms. This version, WASP for C++ Lite, is free for commercial use, unlike the Advanced implementation. The advanced implementation is free only for development and testing, it’s an enterprise level platform, and it provides some additional features over the Lite implementation, such as capability for SSL security. You can download either version of the C++ implementations from http://www.systinet.com/download.html. You are required to register with the site first (it’s free to do that).

The current version of WASP for C++ uses a compiler written in Java to produce stubs and skeletons from service description files, in addition to using Java for the graphical installation wizard. So, if you are going to perform these tasks you would need to install the JDK 1.3.x or later (if you need it you can see http://java.sun.com/j2se/1.3/). You can see my December 2001 article for more on Java Web Services, JDK installation, etc.

The installation of WASP for C++ is fairly easy and quick, particularly if you are using the graphical installation wizard. There would be some differences due the different operating systems, of course. In my case, I installed it on a Windows 2000 computer, by double-clicking on the downloaded file. I installed it in the default folder of “C:\Program Files\wasp_cpp”. Once installed, you can access its documentation at “C:\Program Files\wasp_cpp\doc\products\waspc\index.html” (if you had selected the default installation location under Windows). For more information about installation of WASP Lite on other operating systems you can see http://www.systinet.com/products/wasp_lite/doc/index.html, or the documentation that came within your downloaded file (for example, Linux and Solaris would need two environment variables, WASPC_HOME and LD_LIBRARY_PATH, to be set, so make sure you check the installation instructions for your operating system).

WASP for C++ 1.2 supports SOAP 1.1 and WSDL 1.0. However, some exceptions apply, such as: SOAP headers are not processed and are ignored. All XML Schema datatypes are handled, but some are treated as strings, for example dates, so the program itself would have to handle them. Another important point to know is that WASP for C++ generates the “xsi:type” attribute and when it receives them, it processes them, so they have to match to what you have in the WSDL file. For more information on the limitations of the current release, please see the latest release notes. Also, keep in mind that if you create your WSDL file using utilities that support WSDL 1.1, you may have to adjust it to match the WSDL 1.0 specification i.e. what WASP for C++ server understands (as you’ll see that I had to do in this case).

In terms of compiling the various files, this would depend on your C++ compiler. On Windows 2000, I used Visual Studio 6 SP4 and its C++ compiler to handle this. The document download contains the Visual Studio projects and most of their settings. However, don’t forget to check the following for proper compiling of your files (especially the first two settings, which may not be present in your Visual Studio environment):

· Under the Tools, Options Menu, Directories Tab, add include an additional include files file to the “wasp_cpp\libs\include” directory. My entry is: “C:\PROGRAM FILES\WASP_CPP\LIBS\INCLUDE”.

· Within the same location in Visual Studio, add a library include setting to the “wasp_cpp\libs\bin\wasp” directory. My entry is: “C:\PROGRAM FILES\WASP_CPP\LIBS\BIN\WASP”.

The server, client, and stubs project should have the following settings (if you use the projects within the code download, this should be preset for you):

· Project Settings, Link Tab, General categories pull-down menu, for Object/ Library Modules, you should have “WASPDbg.lib”; Under the Input pull-down menu you should set to ignore the following libraries “nafxcwd.lib,MSVCRT”; and an additional library path should be set to something like “C:\Program Files\wasp_cpp\libs\bin\wasp”.

· Project Settings, C++ Tab, Preprocessor categories pull-down menu, for additional include directories you should have something like “C:\Program Files\wasp_cpp\libs\include”.

I have created 4 projects, one for the stub files with clsJobsSoapPortImpl, JobBank, JobBankIA, and JobBankStructs cpp and header files, one with the server files containing the clsJobsSoapPortImpl and Server files with dependence to the stubs project, one that was just a MakeFile project with dependencies to the both the server and the client project, and finally one project containing the client.cpp file and a dependence to the stubs project. With all of this, you should be able to compile your files. For more information on building your WASP for C++ projects, especially for Linux and Solaris, please see the instructions provided with the HelloWorld example at Systinet http://www.systinet.com/products/waspc/tutorial/helloworld.html.

The installation for the WASP for C++ package, as described in the previous section, is the same for both a client side and server side Web Services setup. However, there are some unique steps to building the server and client side Web Services implementations, so I will cover those points next.

Web Service Server-Side Implementation

The first thing to do in the creation of the WASP for C++ server-side Web Services is to create your own WSDL file that describes your service. If you are creating a client-side implementation only, then you will likely have a WSDL file provided to you by the person or organization that is hosting the Web Service.

There are a few options when it comes to obtaining a WSDL file. You can write your own WSDL file by hand, if you are familiar with the basic WSDL syntax (see the specification at the W3C http://www.w3.org/TR/wsdl). Systinet suggests using their Java2WSDL generator utility that is included with WASP for Java, to create a WSDL file from a simple Java interface or class that mimics your service interfaces. You can obtain the WASP for Java from http://www.systinet.com/products/wasp_lite/index.html. In the case of this article, I will use one of the WSDL files that I had generated earlier using the other language implementations of the Job Bank services. The WSDL file that was created by Microsoft WSDL generator utility was usable with few modifications:

· Make sure that the soapAction attribute of the <soap:operation> element is empty:
<soap:operation soapAction='' />. Microsoft typically provides entries within this attribute.

· The location attribute within the <soap:address> element should be adjusted to match your server-side system configuration. For example, the value I used is:
<soap:address location='http://localhost:7777/wasp/jobadd' />. Besides adjusting for your server name and port number that must be the same as where you have WASP for C++ server listening, followed by the directories in the format of “wasp” and then the method name “jobadd”. These directories are not required to be present on your system, but can be used by your server in differentiating between different Web Services.

· The name attribute of the <port> element that is within the <server> element section should contain the service name and that should match with the service that is implemented under the server-side of WASP for C++. In my WSDL file this appeared like this:
<port name='clsJobsSoapPort' binding='wsdlns:clsJobsSoapBinding' >, where “clsJobsSoapPort” was the name of my service. Actually, WASP for C++ will use this setting to name your class that implements the service.

Once you have the WSDL file, you can use the ServiceCompilerC that is part of the WASP for C++ download to generate the various stub files for you. The ServiceCompilerC is the compiler that WASP uses and it is written in Java. The folks at Systinet had done this for convenience, because they had already built lots of SOAP functionality into their Java libraries. The important point to know for any C++ developer is that at run-time, none of the Java packages are used.

Running the ServiceCompilerC is similar to running any other Java application. You would need to specify arguments to it: the name of the WSDL file and a prefix for all of the generated files. In my case I issued the following statement (also included in the file “generateStubs.cmd” found in this months download):

java -classpath

"C:\Program Files\wasp_cpp\libs\lib\log4j.jar;

C:\Program Files\wasp_cpp\libs\lib\wasp.jar;

C:\Program Files\wasp_cpp\libs\lib\xerces.jar"

com.idoox.soap.tools.ServiceCompilerC

wsJobBank.wsdl JobBank

Looking at this command statement, make sure that you update the classpath locations so it matches the location where you had installed WASP for C++. The WSDL file is “wsJobBank.wsdl” and the prefix selected is “JobBank”.

This command generates a number of files for us. Some of these files are important for the server side implementation and some for the client side implementation of the Web Service. In this section I’ll look at the files important for the server side of the Web Service:

· JobBankIA.cpp and JobBankIA.h contain implementation adaptor classes capable of taking a SOAP request in a string, decoding it, passing the request data to the implementation of the service, encoding the return data, and returning the result message in a string. In short, this class converts SOAP requests to function calls and makes SOAP responses from the results;

· JobBankStructs.cpp and JobBankStructs.h contain helper structs for the data structures used by the service. These files are also used for the client-side implementation;

· ClsJobsSoapPortImpl.cpp and clsJobsSoapPortImpl.h are the skeletons of the implementation of the Web Service. These are named according to the port name in the WSDL file, which in this case is “clsJobsSoapPort”. The actual implementation can be written directly into this class. As an alternative, a new call could be created that is inherited from this implementation class.

Finally, I will need to use the “HTTP_SOAPServerHelper” class for receiving requests and sending responses at a high-level network communication. One way to get you started easier is to use one of the server implementations bundled with the WASP for C++. You would have to modify them slightly to match your implementation. Keep in mind that I will be using a standalone server implementation that does not support parallel message processing. If you need to use a powerful multithread server you would need to bind to your web server, such as IIS or Apache. This is outside of the scope of this article, but you can obtain more information on it from http://www.webware.at/SOAP/index.html, from an area managed by Christian Aberger at WebWare.

You would need your Server.cpp file that is the actual simple web server implementation that handles the incoming requests that are coming to the particular port on your machine. Currently this implementation handles only one Web Service and it can be expended to handle more Web Service implementations, based on the URL submitted. Let’s take a look at the web server implementation within the Server.cpp file.

I start with some includes, as follows:

#include <http/HTTP_SOAPServerHelper.h>

#include <soap/SOAP_Init.h>

#include <stdio.h>

// Each Web Service implementation

// needs something like the next two lines

#include "JobBankIA.h"

#include "clsJobsSoapPortImpl.h"

#if !(defined (WIN32) || defined(_WIN32_WCE))

 #include <signal.h>

 #include <unistd.h>

 void handle(int) {

 SOAP_Terminate ();

 exit(0);

 }

#endif

For each Web Service that this server is going to handle, you would have to add include statements for the header files of the Implementation Adaptor (the “IA” ending) and the implementation of the Web Service (the “Impl” ending). There are some conditional includes and commands for handling signals in certain environments and being able to break when CTRL+C is pressed. Next, I look at the main function of the web server implementation.

int main(int argc, char **argv) {

 SOAP_Initialize ();

 #if !(defined (WIN32) || defined(_WIN32_WCE))

 signal(SIGINT, handle);

 #endif

 TRY(_exc) {

 JobBankIA ia;

 ia.setDefault_clsJobsSoapPortImpl_Instance

 (new clsJobsSoapPortImpl(), 1);

There is a call to initialize SOAP, as well as signal processing conditionals for breaking out of the loop. Then, there is a code involving the initiation of the implementation adopter and pointing it the particular implementation of the particular Web Service have to match to the particular Web Service that you have implemented. Next, I create the server that is going to handle the incoming requests and outgoing responses. The port number is set to “7777”, but you can change it to match your environment (additionally, the port number can be changed when starting this web server from the command line and then providing a parameter for a port number, for ex. “JobBankServer.exe 8080” will cause the server to initialize itself and listen to port 8080.)

 int i_Port = 7777;

 if (argc > 1) {

 sscanf(argv[1],"%i",&i_Port);

 } else {

 printf ("Can supply port as parameter\n");

 }

 HTTP_SOAPServerHelper server

 (i_Port, CONNPROTO_TCP, _exc);

 CHECX_NESTED(_exc);

Once the server has been created, the following code will make the server go into an endless loop of simply waiting for requests coming over HTTP on the port that you had specified.

 for (;;){

 printf ("Waiting for request on port");

 printf (" %i ...\n", i_Port);

 HTTP_SOAPServerHelper::request *req =

 server.getRequest(_exc);

 CHECX_NESTED(_exc);

 if (req == NULL) {

 printf ("Invalid request received!\n");

 continue;

 }

In next few lines of code, the URL is being captured, and it could be optionally used to direct requests to different Web Services implementations. In the case of the Job Bank Web Service described in this article there is only one Web Service that is being handled.

 char *tmp = req->url.transcode();

 printf ("url: %s\n",tmp);

 delete tmp;

 pxerces::DOMString result;

 int resultCode = ia.handleRequest

 (req->body, req->soapAction, result);

 server.respond

 (result, _exc, 500 - resultCode * 300);

 CHECX_NESTED(_exc);

 }

Once the Web Service is called, the results are sent back. Finally, the code ends with some exception handling code that also prints to the screen trace information, if there is an error in the processing of the request or any other unknown error.

 } CATCH (SOAP_AdaptorException,e,_exc) {

 printf ("Adaptor exception: %s\n",

 e->getCharMessage ());

 char *tmp=GET_TRACE (e);

 printf ("Stack trace: %s\n",tmp);

 delete tmp;

 delete e;

 } AND_CATCH_ALL (e, _exc) {

 printf ("Unknown exception: %s\n",

 e->getCharMessage ());

 char *tmp=GET_TRACE (e);

 printf ("Stack trace: %s\n",tmp);

 delete tmp;

 delete e;

 } STOP_CATCH(_exc);

 SOAP_Terminate ();

 return 0;

}

That takes care of the server implementation code. You may wonder about the actual Web Service implementation and what that looks like. This main portion of this can be found within the “clsJobsSoapPortImpl.cpp” file.

#include "clsJobsSoapPortImpl.h"

#include <util/exceptions.h>

#if defined(WIN32) && defined(_DEBUG)

 #if defined(_AFXDLL)

 #define new DEBUG_NEW

 #undef THIS_FILE

 static char THIS_FILE[] = __FILE__;

 #endif

#endif

using namespace pxerces;

After the include directives and preprocessor instructions, there are the standard construction and destruction functions, where optional code could be placed.

clsJobsSoapPortImpl::clsJobsSoapPortImpl() {

}

clsJobsSoapPortImpl::~clsJobsSoapPortImpl() {

}

The actual implementation is contained within the following function. Of course, this sample implementation is very simple and it returns a confirmation message composed from some of the submitted data. Also, note the use of pxerces::DOMString class for handling strings used in the DOM C++ API.

pxerces::DOMString clsJobsSoapPortImpl::JobAdd

 (short _companyID,

 pxerces::DOMString _expireDate,

 pxerces::DOMString _jobTitle,

 pxerces::DOMString _jobDesc,

 double _salaryAmount) {

 if (_companyID ==1) {

 pxerces::DOMString salaryAmountStr =

 ((const SOAP_Primitive&)

 _salaryAmount).DOMStringValue();

 pxerces::DOMString strRes =

 "Your job with title " +

 _jobTitle + " and description " +

 _jobDesc + " was received " +

 "successfully on " + "2/6/2002" +

 ". The salary requested is " +

 salaryAmountStr + " and the expiration " +

 "date of this posting is " +

 _expireDate + ".";

 return (strRes);

 } else {

 return "Your cannot submit job postings.";

 }

}

Client-Side Implementation in WASP for C++

The client implementation is contained within the “client.cpp” file. Systinet provides a sample file in some of their demos that come with the WASP for C++ package that can help you in the creation of this file. I have adapted this example to work with the JobBank Web Service.

#include <portable-dom/dom/dom/DOMString.hpp>

#include <dom/XMLDecoder.h>

#include <stdio.h>

#include "JobBank.h"

int main(int argc, char **argv) {

 SOAP_Initialize ();

 TRY(_exc) {

 printf ("Initializing stub...\n");

 clsJobsSoapPort server;

 if (argc>=2) {

 server._setAddress (argv[1]);

 } else {

 printf ("Can supply service URL ");

 printf ("as parameter\n");

 }

The main function of the WASP for C++ client Web Service starts by initializing SOAP and making a reference to the Web Service. Next, I specify the various parameters and their values. The parameter types are not specified here, but are read from the WSDL file. At this level, all parameters are treated as strings, using the pxerces::DOMString class. Then, a call is being placed to the server.

 short companyID_In = 1;

 pxerces::DOMString expireDate_In

 ("6/15/2002");

 pxerces::DOMString jobTitle_In

 ("Sr. Developer");

 pxerces::DOMString jobDesc_In

 ("Must have 10 years of exp...");

 double salary_In = 90000;

 pxerces::DOMString ds_Res = server.JobAdd

 (companyID_In,expireDate_In,jobTitle_In,

 jobDesc_In,salary_In,_exc);

 CHECX_NESTED(_exc);

Finally, in the following code section, the response from the server is retrieved and displayed on the screen.

 char *tmp=ds_Res.transcode ();

 printf ("Server: %s\n",tmp);

 delete tmp;

 } CATCH (SOAP_StubException,e,_exc) {

 // Error in communication

 printf ("Stub exception: %s\n");

 printf (e->getCharMessage ());

 char *tmp=GET_TRACE (e);

 printf ("Stack trace: %s\n",tmp);

 delete tmp;

 delete e;

 } AND_CATCH_ALL (e, _exc) {

 // Some unknown error

 printf ("Unknown exception: %s\n");

 printf (e->getCharMessage ());

 char *tmp=GET_TRACE (e);

 printf ("Stack trace: %s\n",tmp);

 delete tmp;

 delete e;

 } STOP_CATCH(_exc);

 // Terminate library

 SOAP_Terminate ();

 return 0;

}

Now that I have the WASP for C++ Web Services server running, I wanted to try to see if I can connect to it using another language and environment. I selected ASP and VBScript as an option that would not take much code, because I am really running out of space in this issue. So, here’s the ASP client the calls the WASP for C++ Web Services server. This implementation uses the high-level SOAP API from the MS SOAP Toolkit 2.0. It was able to take the WASP for C++ WSDL file without any modifications. However, note that you may have to adjust your WSDL file path within the ASP code. You would have to place this ASP file under one of the IIS directories and browse to it in your browser.

<%

Dim soapClient

Set soapClient = _

 Server.CreateObject("MSSOAP.soapClient")

soapClient.mssoapinit _

 "C:\Program Files\wasp_cpp\jobBank" & _

 "\wsJobBank.wsdl"

Response.Write soapClient.JobAdd _

 (1, #12/31/2001#, _

 "Project Manager", _

 "Must have 15 years of experience...", _

 120000)

Set soapClient = Nothing

%>

That’s all for this month. Throughout these few articles on connecting Web Services, I hope you were able to get a sense of what it takes to build Web Services on various environments and programming languages, and also become more familiar with some of the more common interoperability issues involved. Although there are challenges in connecting various Web Service implementations, the task is quite possible, even with the current versions of early generation Web Services implementations and toolkits. As time goes on, we will surely see vendors do more extensive interoperability tests and many of the current issues will likely be addressed. Bottom line, just as any other technology, when implementing Web Services, you need to know some of the specific issues or difficulties that you ought to watch for, and the rest is no different than what you are used to doing when programming with any other tool or system.

Zoran Zaev works as the Principal Software Architect for xSynthesis LLC, a software and technology services company in the Washington, D.C. area. He enjoys helping others realize the potential of technology and when he is not working, he spends considerable time writing articles such as this one, and books (for example, he co-authored Professional XML Web Services and Professional XML 2nd Edition with Wrox Press). Zoran’s research interests include complex systems that often involve XML, highly distributed architectures, systems integration, as well as the application of these concepts in newer areas such as biotechnology. When not programming or thinking of exciting system architectures, you will find Zoran traveling, reading, and exploring various learning opportunities.

