Connecting Web Services – Part 3

Zoran Zaev

A couple of months ago, I showed you how to create a Web Service with Visual Basic and then call it using the scripting languages: JScript, VBScript, and PERL. Last month, I created the same Web Service in Java, using the IBM Web Services Toolkit, and then I called it from VBScript. This month I will work on another combination of languages: I’ll create the Web Service in PERL and then call it from Java. As I have said in the past, implementing Web Services in different languages (and platforms) is not very difficult, as long as you have some familiarity with the particular language, the platform, as well some knowledge of XML and SOAP. However, making sure that the different systems can connect to each other can be a bit more challenging. I’ll continue looking into some of these interoperability difficulties, particularly as it relates to PERL and Java based Web Service.

Web Services offer a standard way of connecting systems based on different environments, whether that is operating systems, languages, or object models. As I had mentioned in the previous articles, this is not to say that you should never use Web Services to connect systems based on the same programming language or object model. Similar systems could at times benefit from the inherent loose coupling of the Web Services model, in addition to it being a potentially good long term decision in order to make your system more interoperable in the future.

In this article I will recreate the same simple Web Service that I had created in the past issues (a job bank service, where job postings can be added by our partners), however now I will use PERL for the server side of this Web Service. Then, I will show you how to connect to this Web Service using Java and the IBM Web Services Toolkit.

Server Setup of the PERL Web Service

I used ActiveState’s ActivePERL 5.6 (see http://aspn.activestate.com/ASPN/Downloads/ActivePerl/), but you should be able to use any version of PERL 5.004 or later. The SOAP implementation that I will use is SOAP::Lite, a very nice PERL implementation by Paul Kulchenko. You can find both Win32 and UNIX versions of SOAP::Lite at http://www.soaplite.com/, as well as installation instructions, documentation, etc.

Once you have PERL and the SOAP::Lite module, you will need to configure your web server to run PERL when contacted (this step depends somewhat on the particular web server that you are using – check your PERL documentation for specific instructions on getting PERL to work with your web server). In my case, I used IIS 5 within Windows 2000 (both Professional and Server ought to work fine). The installation procedure of ActivePERL provides an option that would register the PERL executable with IIS. If you did not check this, you would have to manually add this mapping to IIS (“Home Directory” tab from the “Properties” sheet, “Configuration” button, “App Mappings” tab, and then “Add” a mapping to PERL.exe by typing “Z:\Perl\bin\Perl.exe "%s" %s” – where “Z” is the drive letter where you had installed PERL.

Setup the JDK and the IBM Web Services Toolkit

The installation is fairly easy. At the beginning, you would want to make sure that you have the Java SDK 2 (JDK 1.3 or above). If you don’t have it, you can download it from IBM at http://www-106.ibm.com/developerworks/java/jdk/index.html or from Sun at http://java.sun.com/products/?frontpage-main). I will use Sun’s version of Java SDK, the JDK 1.3.1 (http://java.sun.com/j2se/1.3/) and I’ll set up this sample application on a Windows 2000 machine – however you can use Linux for example, if you wish. Once you download the JDK, simply run the downloaded file and follow the instructions provided to you.

In terms of post-installation configuration, you may want to set the PATH variable of your system to “C:\jdk1.3.1_01\bin” (however, replace C:\jdk1.3.1_01 with the JDK path on your own computer), in order to make it easier for yourself when invoking the Java 2 SDK executables such as javac.exe, java.exe. For more information on the Windows installation procedures for the JDK go to http://java.sun.com/j2se/1.3/install-windows.html. You may also like to set the CLASSPATH environment variable, in order to make it easy to compile and run Java classes (the CLASSPATH setting tells Java where to look for user classes – for more information on setting the CLASSPATH you can see http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html). If you are installing the JDK on Linux, you can find installation help at http://java.sun.com/j2se/1.3/install-linux-sdk.html, and for SOLARIS installation you can see the following address http://java.sun.com/j2se/1.3/install-solaris.html. Not having the proper CLASSPATH can easily result in many hours of troubleshooting; so do keep a close eye on this configuration step. The CLASSPATH on my system is the following:

.;c:\wstk-2.4\soap;c:\wstk-2.4\soap\lib\soap.jar;

c:\wstk-2.4\lib\xerces.jar;c:\wstk-2.4\soap\lib\

activation.jar;c:\wstk-2.4\soap\lib\mail.jar;

c:\wstk-2.4\lib\bsf.jar;c:\wstk-2.4\lib\wstk.jar

Notice that the very first entry is “.” (i.e. a period), which represents the current directory. Most of the other paths point to locations within my SOAP or IBM’s WSTK installation directory. Not all of these settings are necessary for running the examples in this issue, but it would be convenient for you to compare these settings with your own, in a case you run into errors that may be related to CLASSPATH settings.

Now that you have set the Java SDK, you can continue with the installation of the IBM WSTK. If you don’t have the toolkit, you can download it from http://www.alphaworks.ibm.com/tech/webservicestoolkit. You can start by running the installation program and follow the configuration instructions. The installation program will set the environment variable JAVA_HOME and point it to the location of your JDK. When this screen appears, make sure that you have the correct path. The IBM WSTK will ask you if you like to conduct a “Typical”, “Custom”, or “Full” installation. “Typical” installation will be sufficient in our case, but you are welcome to experiment with the other options if you like. Once the installation is finished, a configuration screen will be presented to you, allowing you the options of configuring the Web Server and the UDDI Registry that you would like to use. You can keep the default web server and UDDI configuration options, as in this month’s issue, we will not be using the Embedded WebSphere web server. Instead, we will run PERL within IIS.

Web Services Server Code

I created a virtual directory within IIS to point to the location where my PERL files will be stored (in this case my path location to the PERL files was “C:\Inetpub\wsJobBankPERL” and the virtual directory alias is “wsJobBank”). Under IIS, you would want to enable “Script and Executable” access to this directory, in order for PERL to work properly.

Next, I created the PERL Web Service server. This is quite easy to do, by simply exposing the “addJob” subroutine from the “JobBank” package or class. The subroutine checks the companyID and depending on its value, it returns a different value back. Of course, in a real-life scenario, you would likely have code within this subroutine that handles some meaningful tasks (such as access to a database) and only then return a confirmation back to the calling Web Services. The following is the “addJobSrv.pl” file, containing the PERL Web Service.

use SOAP::Transport::HTTP;

binmode STDIN;

SOAP::Transport::HTTP::CGI

 -> dispatch_to('JobBank')

 -> on_action(sub{return})

 -> handle;

package JobBank;

sub addJob {

 my ($className,$companyID,$expireDate,

 $jobTitle,$jobDesc,$salaryAmount) = @_;

 if ($companyID == 1) {

 return "Your job with title: " .

 $jobTitle . " and description: " .

 $jobDesc . " was received " .

 "successfully on " . localtime(time) .

 ". The salary requested is: " .

 $salaryAmount . " and the expiration" .

 "date of this posting is: " .

 $expireDate . ".";

 } else {

 return "Your company is not allowed" .

 " to post jobs to our Job Bank.";

 }

}

This Web Service server implementation is a CGI based SOAP server. You may be aware that applications that run as CGI scripts do not perform that well. So, one of the alternatives is to run your Web Service scripts through the PERL ISAPI (for IIS/ Windows environments) or using persistent technologies like mod_perl. A more detailed discussion of these approaches would be too long to cover in this article.

So, how about creating a PERL client that would call this Web Service? It is quite easy to create a simple PERL Web Services client. PERL being a typeless language, I don’t have to bother setting up the specific types for each of the parameters (although this is possible to be done, as you saw in the earlier article where the PERL Web Services client invoked the Microsoft SOAP server). With PERL, you can avoid specifying the parameter types and names, even when you don’t have a WSDL file available for your Web Service. The Java and Microsoft clients can be made very short (in terms of lines of code) only if they can utilize WSDL files.

use SOAP::Lite;

print "HTTP/1.0 201 Ok \n";

print "Content-type:text/html\n\n";

print "<HTML><HEAD><TITLE>JobBank:".

 "Add Jobs Via PERL";

print "</TITLE></HEAD><BODY>The Response ".

 "from the Web Service is: ";

print "

";

This code simply prints a few lines that would create the HTTP response and the beginning of the HTML page. Then, I initiated the SOAP call and placed its reference into the $soap variable. Next, I obtain the result from the SOAP call and place it into the $result variable. Finally, I print the result onto the screen, or the error, if there happens to be an error in the Web Service request.

my $soap = SOAP::Lite

 -> uri('http://localhost/JobBank')

 -> proxy(

 'http://localhost:8080/wsJobBank/addJobSrv.pl')

 ;

my $result = $soap->addJob

 (1,"12/31/2001 11:15:00 AM",

 "XML Project Manager",

 "Must have 10 years experience",80000);

unless ($result->fault) {

 print $result->result();

} else {

 print join ', ',

 $result->faultcode,

 $result->faultstring;

}

print "</BODY></HTML>";

Notice that the proxy value that I specify refers to port 8080. You would change this value and the server name to the particular values found on your system. In fact, here I had used port 8080 in order to capture the SOAP traffic. I used the Microsoft Trace Utility, and you can use other tracing utilities, if you like. When connecting different systems via Web Services and SOAP, tracing utilities are most helpful. Here is an example of a SOAP message sent by the just described PERL client, as it was captured by the trace utility. The first lines specify the SOAP envelope and the various namespaces needed for it. However, the SOAP body is the part that is even more interesting from the perspective of interoperability.

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENC=

"http://schemas.xmlsoap.org/soap/encoding/"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi=

"http://www.w3.org/1999/XMLSchema-instance"

xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd=

"http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <namesp1:addJob xmlns:namesp1=

 "http://localhost/JobBank">

 <c-gensym5 xsi:type="xsd:int">1</c-gensym5>

 <c-gensym7 xsi:type="xsd:string">

 12/31/2001 11:15:00 AM</c-gensym7>

 <c-gensym9 xsi:type="xsd:string">

 XML Project Manager</c-gensym9>

 <c-gensym11 xsi:type="xsd:string">

 Must have 10 years experience</c-gensym11>

 <c-gensym13 xsi:type="xsd:int">

 80000</c-gensym13>

 </namesp1:addJob>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In this case PERL created the various parameters by providing auto generated names for them. Furthermore, the PERL client had tried its best to guess the parameter types for each of the parameters, even though we had not done this explicitly. Analyzing the SOAP message and its structure reveals quite a bit of information about what the client is sending to the server side of the Web Service. It is very helpful to compare SOAP messages that the server can successfully process with SOAP messages that do not work as expected, when faced with seemingly impossible interoperability situations.

Using a Java Client to Call the PERL Server

Creating the Java Web Services client is not very difficult, although it does require a bit more work due to the fact that I am not using a WSDL file for the call of the PERL Web Service. SOAP::Lite does not include a WSDL generator and if I wanted to use a WSDL file, I would have had to generate it manually. I decided not to do that in this case and I created the parameters manually in the Java Web Service client. Let’s briefly look at the Java code. The code starts with the typical Java import statements, referencing the libraries that I need in order to make this Web Services call work.

import java.util.*;

import java.net.*;

import org.apache.soap.util.xml.*;

import org.apache.soap.*;

import org.apache.soap.encoding.*;

import org.apache.soap.encoding.soapenc.*;

import org.apache.soap.rpc.*;

import org.apache.soap.transport.

 http.SOAPHTTPConnection;

public class wsJobBankClient {

 public static void main(String[] args)

 throws Exception {

Next, I defined the client class that will handle the call. Note that here I have implemented the Java Web Services client as a Java application. I could have chosen to implement it in a JSP/ Servlet scenario, if I wanted to do so. The following lines deal mostly with the setup of the “SOAPHTTPConnection” object and the “Call” object. Among the few very important items specified here are: the target URI that points the Java client to the class that ought to be invoked on the Web Services server end; the Web Service URL or also called Web Service end-point (in your environment, you will want to modify this address to match the server name and port number of your PERL Web Services server); and the method name that is to be called (in this case that is “addJob”).

 SOAPHTTPConnection oHTTPConn =

 new SOAPHTTPConnection();

 Call oCall = new Call();

 oCall.setSOAPTransport(oHTTPConn);

 SOAPMappingRegistry oSOAPMap =

 new SOAPMappingRegistry ();

 StringDeserializer oStrDeserial =

 new StringDeserializer ();

 oSOAPMap.mapTypes (Constants.NS_URI_SOAP_ENC,

 new QName ("", "Result"),

 null, null, oStrDeserial);

 oCall.setSOAPMappingRegistry (oSOAPMap);

 oCall.setEncodingStyleURI ("http://" +

 "schemas.xmlsoap.org/soap/encoding/");

 oCall.setTargetObjectURI("http://" +

 "localhost/JobBank");

 String strServiceURL =

 new String ("http://" +

 "localhost:8080/wsJobBank/addJobSrv.pl");

 oCall.setMethodName("addJob");

 URL oURL = new URL(strServiceURL);

The next code section is where I specified the various parameters, by manually stating the name, type, value, and their encoding type. One method of working around parameter types and challenges with accurate conversion of the parameters from one system to another is to do manual data type conversions and then transfer the data as a string. SOAP calls are XML and XML is plain text. Even though, this is not the perfect way of doing things, it works just fine, at least for the short run, while some of the toolkits interoperability issues get cleared up. So, in the case of this code, I had decided to convert the date type into a string manually and sent it as such across the wire. The other data types: string, integer, and double, worked quite well.

 Vector oParIn = new Vector();

 oParIn.addElement(

 new Parameter("intCompanyID",Integer.class,

 new Integer (1),

 Constants.NS_URI_SOAP_ENC));

 oParIn.addElement(

 new Parameter("strExpireDate",String.class,

 new String ("12/31/2001 11:15:00 AM"),

 Constants.NS_URI_SOAP_ENC));

 oParIn.addElement(

 new Parameter("strJobTitle", String.class,

 new String ("Project Manager"),

 Constants.NS_URI_SOAP_ENC));

 oParIn.addElement(

 new Parameter("strJobDesc", String.class,

 new String ("Desc..."),

 Constants.NS_URI_SOAP_ENC));

 oParIn.addElement(

 new Parameter("intSalary", Double.class,

 new Double (80000.0),

 Constants.NS_URI_SOAP_ENC));

 oCall.setParams(oParIn);

 System.out.println("\n\nAdding Jobs Using " +

 "Java Web Services Client \n" +

 "Request Submitted to " +

 "PERL Web Services Server\n\tAt Address:" +

 " " + strServiceURL + "\n");

Finally, I created the response object and populated it by calling the “invoke” method of the “Call” object. I checked for a potential “Fault” response and printed some information on the screen.

 Response oResp;

 try {

 oResp = oCall.invoke(oURL, strServiceURL);

 } catch (SOAPException e) {

 System.out.println("SOAPException (" +

 e.getFaultCode() + "): " + e.getMessage());

 return;

 }

 if (!oResp.generatedFault()) {

 Parameter oParResult =

 oResp.getReturnValue();

 Object value = oParResult.getValue();

 System.out.println (value);

 } else {

 Fault oFault = oResp.getFault ();

 System.out.println ("JAVA Web Service"+

 "Error!\n" + "Fault Code= " +

 oFault.getFaultCode() + "\n" +

 "Fault String = " +

 oFault.getFaultString());

 }

 }

}

That’s all for this month. I hope you are getting a sense that connecting various systems via Web Services is not as daunting of a task as it may have appeared originally to you. Just as any other technology, you need to know some of the specific issues or difficulties to watch for and the rest is no different than what you are used to doing when programming with any kind of system or environment. I’ll continue with the coverage of connecting Web Services in various environments in some of the following issues. I’ll look to illustrate the interconnectivity with yet another combination of environments.

Zoran Zaev works as the Principal Software Architect for xSynthesis LLC, a software and technology services company in the Washington, D.C. area. He enjoys helping others realize the potential of technology and when he is not working, he spends considerable time writing articles such as this one, and books (for example, he co-authored Professional XML Web Services and Professional XML 2nd Edition with Wrox Press). Zoran’s research interests include complex systems that often involve XML, highly distributed architectures, systems integration, as well as the application of these concepts in newer areas such as biotechnology. When not programming or thinking of exciting system architectures, you will find Zoran traveling, reading, and exploring various learning opportunities.

