Connecting Web Services – Part 2

Zoran Zaev

Last month, I showed you how to create a Web Service with Visual Basic and then call it using the scripting languages: JScript, VBScript, and PERL. This month, I’ll create the same Web Service in Java, using the IBM Web Services Toolkit, and then I will call it from VBScript. Keep in mind that implementing Web Services in different languages (and platforms) is not very difficult, as long as you have some familiarity with the particular language, the platform, as well some knowledge of XML and SOAP. However, making sure that the different systems can connect to each other can be a bit more challenging. I’ll look into some of these interoperability challenges, particularly as it relates to using VBScript to call a Java based Web Service.

Web Services offer a standard way of connecting systems based on different environments, whether that is operating systems, languages, or object models. As I had mentioned in the last article, this is not to say that you should never use Web Services to connect systems based on the same programming language or object model. Similar systems could at times benefit from the inherent loose coupling of the Web Services model, in addition to it being a potentially good long term decision in order to make your system more easily interoperable in the future.

In this article I will create the same simple Web Service that I had created in the last issue (a job bank service, where job postings can be added by our partners), however now I will use Java, the IBM Web Services Toolkit 2.4 (IBM WSTK), and IBM Web Sphere that is based on Apache’s web server for the server side implementation of the Web Service. Then, I will show you how to connect to this Web Service using VBScript implemented as a Windows Scripting Host (WSH) client. Due to limited space in this issue, I will defer the description of a Java client, and potentially some other language clients for one of the next issues.

Setup the JDK and the IBM Web Services Toolkit

I’ll start by covering the IBM Web Services Toolkit (IBM WSTK). The current version of this toolkit (v.2.4) contains various components. One component is the Apache SOAP Toolkit 2.2, which is also available from the Apache organization at www.apache.org as an individual download. The IBM Web Services Toolkit comes in Windows 2000 and Linux versions. On the Java language side, it requires Java 2 i.e. JDK 1.3 or higher by IBM or Sun. Some of its utilities require Internet Explorer 5 or above, or Netscape 4.5 or above. In terms of its web server support, it can use the included IBM Embedded WebSphere, or the IBM WebSphere Application Server 3.5/4.0, or Apache Tomcat (available free of charge from www.apache.org). For development purposes, you can use the IBM Embedded WebSphere 3.5 web server, which is a scaled down version of the real production version server (it is really limited to be used with the toolkit only). For production level hosting of your service, it is recommended that you use the IBM WebSphere Application Server or Apache Tomcat web server. Finally, note that the IBM WSTK contains some other packages such as: WSDL4J 0.8 that is the WSDL (Web Services Description Language) package for Java, XML4J 3.2.0 that contains Apache Xerces 1.4.0 i.e. the XML processor for Java that provides DOM level 2 and SAX 2 functionality to the Java programming environment, Lotus XSL – Java 2.2 that contains Apache Xalan 2.2 i.e. the XSLT processor for Java, and IBM UDDI4J 1.0.3 or UDDI support libraries for Java.

The installation is fairly easy, although I have to say that it is more lengthy that the Microsoft SOAP toolkit. At the beginning, you would want to make sure that you have the Java SDK 2 (JDK 1.3 or above). If you don’t have it, you can download it from IBM at http://www-106.ibm.com/developerworks/java/jdk/index.html or from Sun at http://java.sun.com/products/?frontpage-main). I will use the Sun’s version of Java SDK, the JDK 1.3.1 (http://java.sun.com/j2se/1.3/) and I’ll set up this sample application on a Windows 2000 machine – however you can use Linux for example, if you wish. Once you download the JDK, simply run the downloaded file and follow the instructions provided to you.

In terms of post-installation configuration, you may want to set the PATH variable of your system to “C:\jdk1.3.1_01\bin” (however, replace C:\jdk1.3.1_01 with the JDK path on your own computer), in order to make it easier for yourself when invoking the Java 2 SDK executables such as javac.exe, java.exe. For more information on the Windows installation procedures for the JDK go to http://java.sun.com/j2se/1.3/install-windows.html. You may also like to set the CLASSPATH environment variable, in order to make it easy to compile and run Java classes (the CLASSPATH setting tells Java where to look for user classes – for more information on setting the CLASSPATH you can see http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html). If you are installing the JDK on Linux, you can find installation help at http://java.sun.com/j2se/1.3/install-linux-sdk.html, and for SOLARIS installation you can see the following address http://java.sun.com/j2se/1.3/install-solaris.html. Not having the proper CLASSPATH can easily result in many hours of troubleshooting; so do keep a close eye on this configuration step. The CLASSPATH on my system is the following:

.;c:\wstk-2.4\soap;c:\wstk-2.4\soap\lib\soap.jar;

c:\wstk-2.4\lib\xerces.jar;c:\wstk-2.4\soap\lib\

activation.jar;c:\wstk-2.4\soap\lib\mail.jar;

c:\wstk-2.4\lib\bsf.jar;c:\wstk-2.4\lib\wstk.jar

Note that the very first entry is “.” (i.e. a period), which represents the current directory. Most of the other paths point to locations within my SOAP or IBM’s WSTK installation directory. Not all of these settings are necessary for running the examples in this issue, but it would be convenient for you to compare these settings with your own, in a case you run into some errors that may be related to CLASSPATH settings.

Now that you have set the Java SDK, you can continue with the installation of the IBM WSTK. If you don’t have the toolkit, you can download it from http://www.alphaworks.ibm.com/tech/webservicestoolkit. You can start by running the installation program and follow the configuration instructions. The installation program will set the environment variable JAVA_HOME and point it to the location of your JDK. When this screen appears, make sure that you have the correct path. The IBM WSTK will ask you if you like to conduct a “Typical”, “Custom”, or “Full” installation. “Typical” installation will be sufficient in our case, but you are welcome to experiment with the other options if you like. Once the installation is finished, a configuration screen will be presented to you, allowing you the options of configuring the Web Server and the UDDI Registry that you would like to use. For the purpose of the sample application shown in this article, I will suggest that you keep the defaults: “Embedded WebSphere” at the address of “localhost:8080” (8080 is the port number, which in this case is different than the typical HTTP port number of 80, thus we must add it to our URL). Also, you can keep the default IBM UDDI Test Registry settings (except that you will be required to enter a username and password – you can enter any at this time because we will not use UDDI this month). If in your situation, you have another web server such as Apache, you can experiment in using the other settings within this configuration screen.

You can run the Embedded WebSphere web server by going into the “bin” directory of your IBM WSTK (for example C:\wstk-2.4\bin) and typing “WebSphere start” at the command prompt. Once the web server is running, you should be able to verify this, by going to your web browsers and typing the following URL: http://localhost:8080/soap/index.html. If you want to use another web server, such as Apache Tomcat, you can follow the help documents included with the IBM WSTK for assistance with the configuration.

The Web Service – server side code

As within the last month’s article, the sample Web Service this month is a job submittal service, part of a sample Job Bank system. One can imagine partners being allowed to submit new job postings to this Web Service. Of course this Job Bank is a sample application, and in a real life scenario, you will have more complex Web Services (and likely more than one Web Service). Additionally, security will be applied, so that not everybody can submit a new job posting.

Now, I will create the Java class file that I will expose in this Web Service. This is just like creating any other Java class file, with no special references to the IBM WSTK.

import java.util.*;

public class wsJobBank {

 public static void main (String[] args) {

 wsJobBank oTestWS = new wsJobBank();

 String msg = oTestWS.JobAdd(1,"1/1/2000",

 "Project Manager","Desc...",

 (double)70000.0);

 System.out.println("TEST: The following " +

 "message was returned by the Web service");

 System.out.println(" " + msg);

 }

In this first section of the code, I created the wsJobBank class and I placed some test code within the main method, which can be used for testing purposes (i.e. I can run this Java file from the command line and have this main method test JobAdd method that follows). So, the next code section shows the JobAdd method that you will be interested in exposing as a Web Service. This method has the same functionality as the original method that I had created with Visual Basic 6 and presented in the last issue. Once you enter this code into your wsJobBank.java file, you can compile it with javac wsJobBank.java and then you can run the compiled code by typing java wsJobBank. This procedure will execute the main method within the wsJobBank class, which in return will call the JobAdd method, by providing it some test values and printing out the result. This is one way to verify that our Java class and its methods were typed correctly. As you can see, there is no mention of Web Services anywhere in this code. That is because the classes and methods that get exposed via Web Services do not require you to have any special support for Web Services built within them. In other words, you can expose any existing Java class that you have as a Web Service, and that’s a good feature. At the end, I had moved the Java source file and compiled class into the “C:\wstk-2.4\soap” directory (i.e. my SOAP directory). You can try another location if you like, just keep in mind the CLASSPATH settings.

 public String JobAdd (

 int companyID,

 String expireDate,

 String jobTitle,

 String jobDesc,

 double salaryAmount) {

 if (companyID == 1) {

 return "Your job with title: " +

 jobTitle + " and description: " +

 jobDesc + " was received " +

 "successfully on " +

 new Date().toString() +

 ". The salary requested is: " +

 salaryAmount + " and the expiration" +

 "date of this posting is: " +

 expireDate + ".";

 } else {

 return "Your company is not allowed" +

 " to post jobs to our Job Bank.";

 }

 }

}

Using the WSDL Utility

Once the server side of the Java-based Web Service has been created, compiled, and successfully tested (for example you can compile the Java file by running “javac wsJobBank.java”, and you can test it by typing at the command prompt “java wsJobBank”), you can run the WSDL utility. This utility will help you create the WSDL files for this Web Services, and the additional deployment descriptor document needed for the deployment of this Web Service. The alternative to using this WSDL utility is to create the WSDL files and deployment descriptor file by hand, which is much more time consuming and I will not cover it in this article.

You can start the WSDL wizard, by executing the “wsdlgen.bat” file found within the “bin” folder of the IBM WSTK installation directory. The first screen will ask you to specify the type of entity you want to expose as a Web Service. The options are Java Class, EJB (Enterprise JavaBeans) JAR file, or a COM dispatch interface (found on the Windows platform). You will need to select Java Class in order to expose the Java Class “JobBank” that you had just created. For a “Class Name” you would specify “wsJobBank”, for “Classpath” you will have “C:\wstk-2.4\soap” (or the folder where you have placed your Java Class file). The “Output Filename” will default to “wsJobBank_Service.wsdl”. I have also modified the “WSDL URL prefix” in order to match the directory location where I will have the WSDL files that will be created by this WSDL Utility (I will place them below the soap folder that within the web server space, i.e. exposed onto the web server – the specific location in this case is “C:\wstk-2.4\soap\webapps\soap\wsdl\wsJobBank_Service.wsdl”. You can see the rest of the settings on the image shown below.

** Insert nov2001-0001.tif

Java Class WSDL Generator

Once you click “Next”, you will be shown another screen with a list of methods and operations found in the Java Class. At that point, you will select the “JobAdd” method. Notice that some methods listed will have a colored dot within the status column. This shows that those methods may have complex data types that the WSDL generator may not be able to recognize. If you are to select an operation with a colored dot in the status column, you will likely have to modify the WSDL file manually in order to support that operation. The “JobAdd” method from the “wsJobBank” Java class does not have a complex method and it will not have a colored dot in its status column. Once you have selected the operation that you like to have exposed via the Web Service, you can click “Next” and then “Finish”. The WSDL utility will create three files: two WSDL files (one that includes the term “interface” contains the abstract port type definition of the Web Service, and the other contains the concrete implementation information of the Web Service), and one called the “DeploymentDescriptor.xml” that can be used for linking the web server listener and the Java class.

After running the WSDL Utility, you will need to modify the wsJobBank_Service.wsdl. The “wsJobBank_Service.wsdl” file imports the “wsJobBank_Service-interface.wsdl” file. However, Microsoft clients do not understand this directive at the present time. Therefore, you will have to copy entire content from the “wsJobBank_Service-interface.wsdl” file (from the <MESSAGE> to the </BINDING> tag) and paste it within the “wsJobBank_Service.wsdl” file. If you like to trace the messages being passed between the client and the server with utilities such as the “Trace Utility” included in the Microsoft SOAP Toolkit or the “tcptunnel.bat” utility provided with the IBM WSTK, you can modify the <SOAP:Address> element “location” attribute to point to a different port number such as “8888” for instance. Then, set your tool to listen to this port and forward request to the web server port, such as “8080” (typical port for the IBM Embedded WebSphere or Apache web servers.

Now, you can go to http://localhost:8080/soap/admin/ and deploy your Web Service. Click to the “Deploy” button found on the left of the screen. You will be presented with a “Deploy Service” form that you would need to fill out. For ID you can use “urn:wsjobbank-service”, scope should be “Request” for most occasions, for method you will have “JobAdd”, provider “Java”, under the Java Provider section, you will enter “wsJobBank” for provider class. The rest of the form, in this situation can be left at default. As an alternative approach, you can deploy this Web Service using a command line interface and the “DeploymentDescriptor.xml” file: java org.apache.soap.server.ServiceManagerClient http://localhost:8080/soap/servlet/rpcrouter deploy DeploymentDescriptor.xml or you can use the “deploy.bat” file that I have created for you (included in the download for this month’s article).

Connecting with VBScript client

Since the Java Web Service client that connects to the Java Web Service server end will be a slightly longer, I decided to only show you how to connect to this Java-based Web Service using VBScript and come back to the creation of the Java client next time. As you may recall, implementing a VB SOAP client, in the Microsoft environment, can be done using the high level API (using WSDL files) or the low level API (within the use of WSDL files). Microsoft’s high level API creates SOAP messages without adding “xsi:type” attributes within the method call parameters (in other words, it does not specify the type of the parameters, but it lets the service rely on its WSDL file). Java Web Service servers need to know what is the type of each of the parameters in the SOAP call. In the latest version of the Apache SOAP v.2.2 (that is included with the IBM WSTK 2.4) there was some improvement in this area. However, there are still some outstanding issues that I will hope to cover more in one of our upcoming articles (such as the treatment of dates, manually specifying deserializers on the Java side, using SOAPMappingRegistry on the Java client side, etc.) Many of these interoperability challenges will likely be addressed with upcoming version of the Web Services toolkit implementations, but even at the current time, there are workarounds that will address these items. One of the workarounds is to implement the client using the Microsoft low level API. This approach will allow me to specify the type of each parameter manually, however it takes a little bit more code and it bypasses the use of the WSDL file that we had created earlier. In one of the next issues, I will come back to using the WSDL file.

The VBScript code starts by printing couple of messages on the screen, and then it sets the few important variables and objects that are used by the Microsoft low-level API.

Dim Connector

Dim Serializer

Dim Reader

Set Connector = _

 CreateObject ("MSSOAP.HttpConnector")

Set Serializer = _

 CreateObject ("MSSOAP.SoapSerializer")

Set Reader = CreateObject ("MSSOAP.SoapReader")

URL = _

 "http://localhost:8888/soap/servlet/rpcrouter"

ENC = "http://schemas.xmlsoap.org/soap/encoding/"

XSI = "http://www.w3.org/2001/XMLSchema-instance"

XSD = "http://www.w3.org/2001/XMLSchema"

URI = "urn:wsjobbank-service"

Method = "JobAdd"

wscript.echo chr(13) & chr(13) & chr(10) & _

 "SOAP Client Using Windows Scripting Host" & _

 " (WSH)" & chr(13) & chr(10)

wscript.echo "Reply from Java Web Server:" & _

 chr(13) & chr(10)

The “Connector” object handles the HTTP binding for the SOAP protocol. The “Serializer” object handles the manual creation of the SOAP message. You can see how I create the envelope first, then the <BODY> tag with all of its sub-elements that contain the method call and all of the parameters required. The parameter types are specified, as well.

Connector.Property("EndPointURL") = URL

Connector.Connect

Connector.Property("SoapAction") = URI & "#" & _

 Method

Connector.BeginMessage

Serializer.Init Connector.InputStream

Serializer.startEnvelope , ENC

Serializer.SoapNamespace "xsi", XSI

Serializer.SoapNamespace "SOAP-ENC", ENC

Serializer.SoapNamespace "xsd", XSD

Serializer.startBody

Serializer.startElement Method, URI, , "method"

Serializer.startElement "companyID"

Serializer.SoapAttribute "type",,"xsd:int","xsi"

Serializer.writeString "1"

Serializer.endElement

Serializer.startElement "expireDate"

Serializer.SoapAttribute "type",,"xsd:string",_

 "xsi"

Serializer.writeString "12/31/2001 11:15:00 AM"

Serializer.endElement

Serializer.startElement "jobTitle"

Serializer.SoapAttribute "type",,"xsd:string",_

 "xsi"

Serializer.writeString "XML Project Manager"

Serializer.endElement

Serializer.startElement "jobDesc"

Serializer.SoapAttribute "type",,"xsd:string",_

 "xsi"

Serializer.writeString _

 "Must have 10 years of technical "

Serializer.endElement

Serializer.startElement "salaryAmount"

Serializer.SoapAttribute "type",,"xsd:double",_

 "xsi"

Serializer.writeString "80000"

Serializer.endElement

Finally, I close the message body and envelope, and I use the “Reader” object to read the SOAP message, both in the case of success or failure.

Serializer.endElement

Serializer.endBody

Serializer.endEnvelope

Connector.EndMessage

Reader.Load Connector.OutputStream

If Not Reader.Fault Is Nothing Then

wscript.echo Reader.faultstring.Text

Else

wscript.echo Reader.RPCResult.text

End If

You can run this file, from the command prompt, by typing “cscript JobAddVBSLow.vbs”.

Well, that’s all for this month. In the next issues, I’ll continue with the coverage of Web Services in various environments. I’ll return to Java and particularly to the design and setup of the Java based Web Service client, and the use of the WSDL within Java. I’ll look at some other interoperability challenges and approaches to work around them.

Zoran Zaev works as the President and Chief Software Architect for Xsynthesis, a software and technology services company in the Washington, D.C. area. He enjoys helping others realize the potential of technology and when he is not working, he spends considerable time writing articles such as this one, and books (for example, he co-authored Professional XML Web Services and Professional XML 2nd Edition with Wrox Press). Zoran’s research interests include complex systems that often involve XML, highly distributed architectures, systems integration, as well as the application of these concepts in newer areas such as biotechnology. When not programming or thinking of exciting system architectures, you will find Zoran traveling, reading, and exploring various learning opportunities.

